Evaluation work @ LANL for ENDF/B-VIII relevant to the NCSP

Nuclear Criticality Safety Program
Annual Technical Program Review
14-15 March 2017

Washington, D.C.

M. Paris, G. Hale, A. Kahler, T. Kawano, I. Stetcu, P. Talou Group T-2 Los Alamos National Laboratory

14 March 2017

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's

Overview: LANL/T-Div. nuclear data evaluation project

Organizing principle

- Comprehensive, consistent theoretical modeling
 - Constrain nuclear data evaluations
 - Consistent with the quantum theory (when possible)
 - Quantify uncertainty

Synergistic efforts

- NNDC: ENDF/B-VIII.β4 tagged 2017 Feb 28
 - NB: criticality has been affected
 - <u>Dave Brown</u> tomorrow morning
 - drafting Nuclear Data Sheets manuscript (to appear 2018 January)
- CIELO collaboration (NEA WPEC-Subgroup 40)
 - https://www-nds.iaea.org/CIELO/
- IAEA Standards
- Array of end-point users
 - Nuclear security, energy, basic research

Exp't collaborations

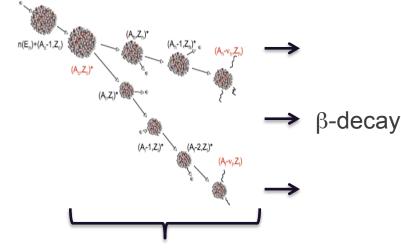
- DANCE and JRC (Geel) for prompt fission gamma-ray spectra
- Chi-Nu & RPI for prompt fission neutrons
- LENZ for e.g. $^{16}O(n,\alpha)$

Outline

Heavy/fission analyses

- Codes overview/development
 - CoH; DeCE; CGMF; NJOY2016/21
- Evaluation work:
 - Prompt fission neutron spectra
 - Prompt fission gamma-ray evaluations
 - Updated cross sections for ⁵⁹Co
 - New elastic scattering angular dist's ²⁰⁸Pb

Light element analyses


- R-matrix analyses: EDA code
- ENDF/B-VIII.0 ¹⁶O evaluation
 - Low-energy scattering cross sections
 - ${}^{13}C(\alpha,n)$ and ${}^{16}O(n,\alpha_0)$ cross sections
 - Fits, data renormalizations, etc.
 - Differences with VII.1
 - Data testing; β4 released
- ENDF/B-VIII.0
 - 12,13C evaluations
 - Light-element standards
 - ¹H, ⁶Li, ¹⁰B, and C
- Modern/modular code development
 - EDA6 (Fortran2003 version of current EDA5/F77)
 - ENDF-6/GND interface

Heavy system analyses

UNCLASSIFIED

Monte Carlo Hauser-Feshbach (CGMF)

- Hauser-Feshbach statistical theory of nuclear reactions
 - Neutron and γ-ray emission probabilities calculated and sampled at each stage of the decay
- **CGMF**: Monte Carlo implementation
- Full kinematic reconstruction of fission fragments, neutrons and gammas emitted

Prompt emissions of n and γ within 10⁻¹⁴ sec

Monte Carlo histories of fission events

 $A, Z, KE, U_i, J_i, \pi_i, \nu_n, \nu_{\gamma}$ $\vec{p}_F(\text{pre}), \vec{p}_F(\text{post})$ in LAB frame $\{\vec{v}_{n_i}, E_{n_i}\}_{i=1,\nu_n}, \{\vec{v}_{\gamma_i}, E_{\gamma_i}\}_{j=1,\nu_{\gamma_i}}$

Recent code development

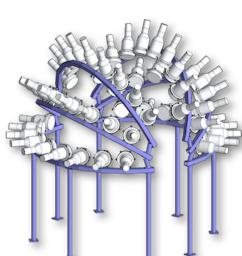
CoH

- Inclusion of M1 "scissors" mode in strength function
 - strongly impacts abs norm of capture cross section [PRC 89, 034603, 2014]

DeCE

ENDF formatting tool; open source https://github.com/toshihikokawano/DeCE

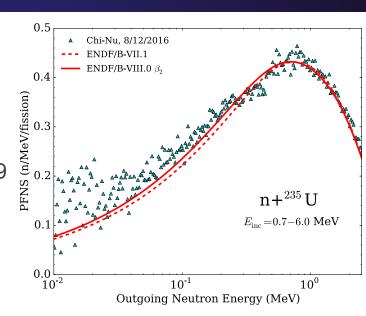
CGMF


- Extending actinide analyses
 - fission fragment mass and charge yields [from Moller (LANL T-2)]
- Global and consistent evaluations of prompt neutrons and gamma rays
 - Various studies in progress
- Synergistic effort with NA22 to implement CGMF into MCNP6.2 release
 - Current effort to improve precision of criticality predictions
- NJOY2016 open source release [Skip Kahler* (LANL T-2) tomorrow 11:25a]
 - Development of NJOY21 is in progress [Jeremy Conlin LANL XCP-5]

*Last TPR

Prompt fission neutron spectra evaluations

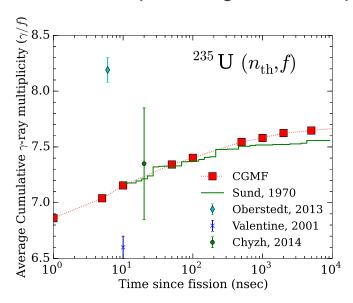
• X_v (Chi-nu) @ LANSCE

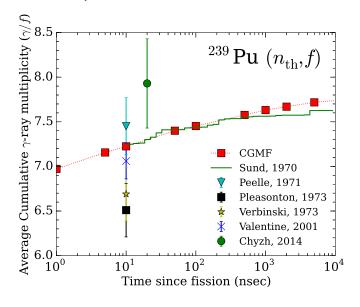

- ²³⁵U: low-energy array
- ²³⁹Pu awaiting data

Chi-nu high-energy detector with high- & low-energy arrays

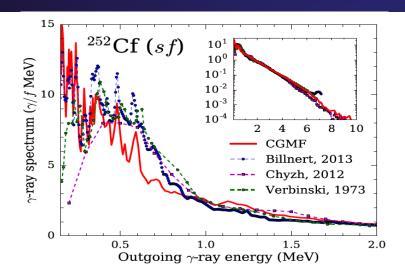
Prompt fiss. n mult. dist. P(v)

- CGMF+Terrell < 20 MeV U8/9/P9</p>
- Proposed new ENDF-6 format
 - CSEWG accepted
- P(v,E_{inc}) inclusion in B-VIII.0

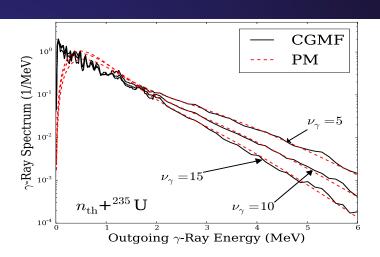

New evaluations U5/P9

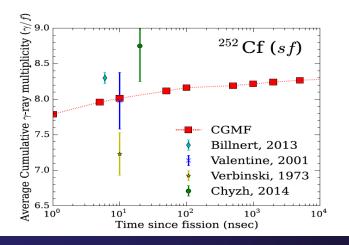

- Model: CoH+Madland-Nix
- Improved high-energy models
 - Multi-chance fission; pre-eq; corrected (n,xnf) spectra
- ENDF-6 format for B-VIII.0 rls.

Prompt fission gamma-ray evaluations

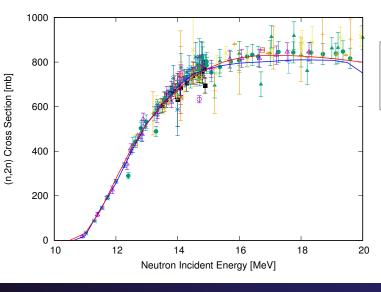

Calculations performed using CGMF

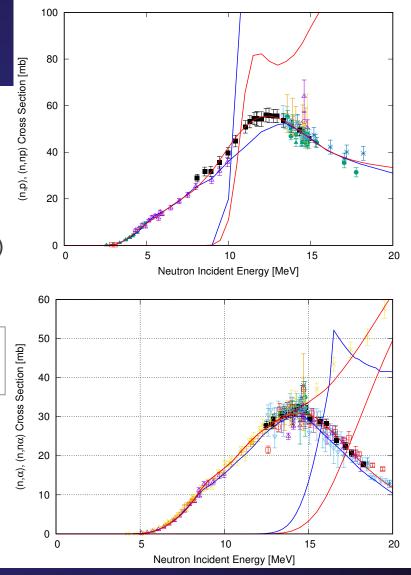
- Gamma-multiplicity dependent spectra calculated for the first time
 - very good agreement with experimental data from DANCE (LANSCE)
- New evaluated files prepared for ENDF/B-VIII.0 (in testing)
- Time-dependent gamma multiplicity (PRC 94, 064613, 2016)





Prompt fission gamma properties


- Simulations reproduces features of experiment (discrete transitions in fission fragments). Details depend on the less known nuclear structure information
- Significant dependence of the multiplicity-dependent prompt fission gamma-spectra with multiplicity. Simulations reproduce well the experiment
- Average gamma-ray multiplicity changes significantly with the time coincidence window
- ➤ Detailed simulations available for ²³⁵U(n,f), ²³⁸U(n,f), ²³⁹Pu(n,f), ²⁴⁰Pu(sf), ²⁴¹Pu(n,f), ²⁴²Pu(sf).


⁵⁹Co evaluation

- Re-evaluation above 100 keV with CoH₃
- Coupled-channels DWBA calculation
- Updated σ, eng & ang distributions:
 - (n,n'), (n,2n), (n,3n), (n,p), (n,np), (n,α), (n,nα), (n,d), (n,nd), (n,t), (n,3He), (n,2p), (n,pα), (n2np)
 & (n,γ) (cross-section only)

• CoH₃

The light stuff

R-Matrix theory ensures analyses consistent with the quantum theory

- Causality (complex analyticity)
- Probability conservation (unitarity)
- Time reversal invariance (reciprocity)

Physical Principle (mathematical req.)

EDA: R-Matrix code features

- Observes above mathematical requirements
- Any spins, masses, charges two-body channels
- Relativistic kinematics and R-matrix parametrization
- All polarization observables for 2→2 processes
- Fairly general data-handling capabilities (< SAMMY)
- Optimization via variable-metric algorithm
 - ✓ parameter covariances at solution

Recent EDA code development

Data handling

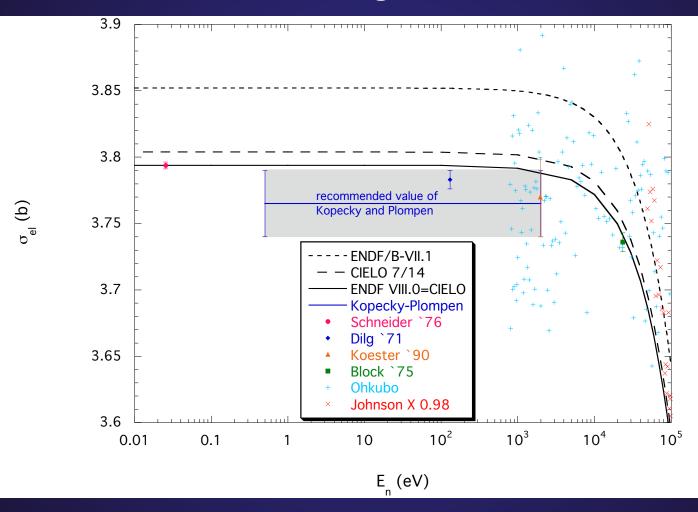
- Python codes under development
 - XML container "GND"

Analysis code

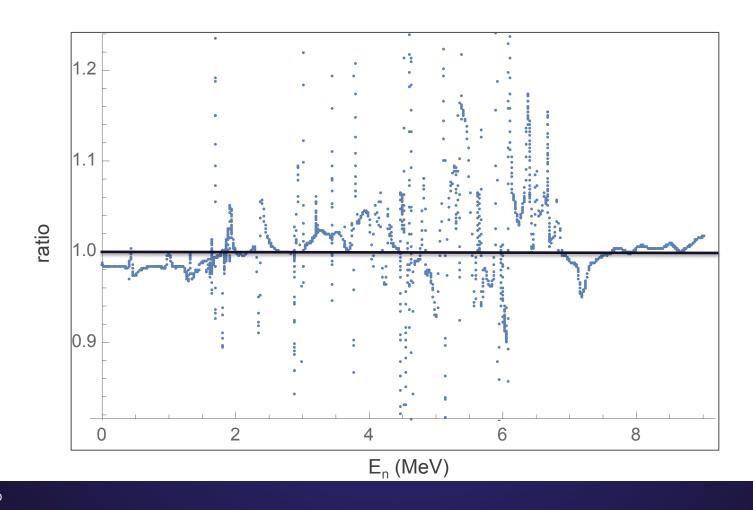
- Existing EDA5 (F77) → EDA6 (Fortran2003/2008)
- Modular/OOP code design
- EDA6 superset of existing EDA5 features/capabilities

Exchange formats

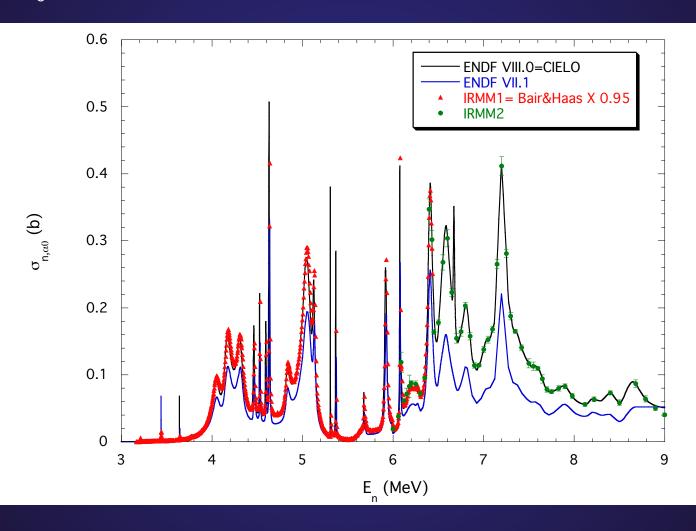
- Built-in ENDF-6/GND/ACE(cont.)/NDI(multigroup)/...
- Uncertainty quantification
 - Importance function; Bayesian
- Long(er)-term development
 - Implementation into integral benchmark codes
 - Concurrent optimization of light and heavy analyses


R-Matrix Analysis of Reactions in the ¹⁷O System

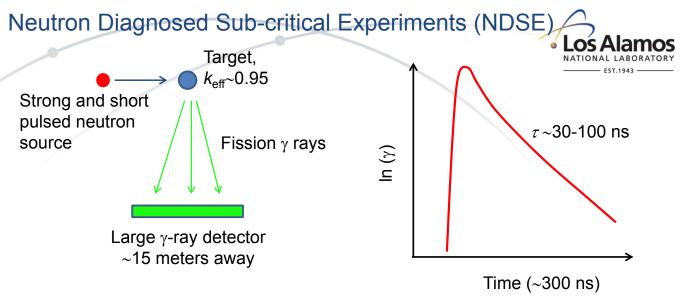
channel	a _c (fm)	I _{max}
n+ ¹⁶ O	4.4	4
α +13 C	5.4	5


Reaction	Energies (MeV)	# data points	Data types
¹⁶ O(n,n) ¹⁶ O	$E_n = 0 - 7$	2540	σ_T , $\sigma(\theta)$, $P_n(\theta)$
$^{16}O(n,\alpha)^{13}C$	$E_n = 2.35 - 5$	672	σ_{int} , $\sigma(\theta)$, $A_n(\theta)$
$^{13}\text{C}(\alpha, n)^{16}\text{O}$	$E_{\alpha} = 0 - 5.4$	870	σ_{int}
$^{13}\mathrm{C}(\alpha,\alpha)^{13}\mathrm{C}$	$E_{\alpha} = 2 - 5.7$	1168	$\sigma(\theta)$
total		5250	8

 χ^2 per degree of freedom = 1.68


n+16O Elastic Scattering Cross Section

Ratio of ENDF/B-VIII.0/VII.1 σ_T for Oxygen


$^{16}O(n,\alpha_0)^{13}C$ Cross Section

Summary & Outlook

- > Continued advancement in the application of fundamental quantum-theoretical methods to understanding data
- > ENDF/B-VIII.B4
- > Improved physical models PFNS & PFGS
 - > CGMF: Multi-chance fission; pre-eq; corrected (n,xnf) spectra
 - ➤ CoH: Scissors M1 mode capture normalization
- > Light element evaluations
 - Modernization of EDA and auxiliary codes
 - > Spectra; many-body final states; *ab initio* calculations
- > Development of integrated codes
 - ➤ Move toward concurrent differential/integral optimization

Thank you

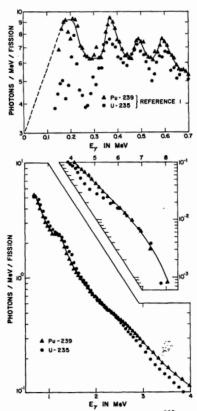
LANL recently funded a LDRD project to measure the time dependence of gamma emission from sub-critical static objects following the irradiation from a strong and short burst of neutrons.

Other fission data of interest to this (and related) projects are :

- The number and time scale of beta-delayed fission.
- The number and energy spectra of γ -rays emitted from fragments on the relevant time scales.
- Fission n and γ-ray multiplicity distributions, correlations between fission n and γ multiplicity and the corresponding energy spectra (for detailed noise analysis).

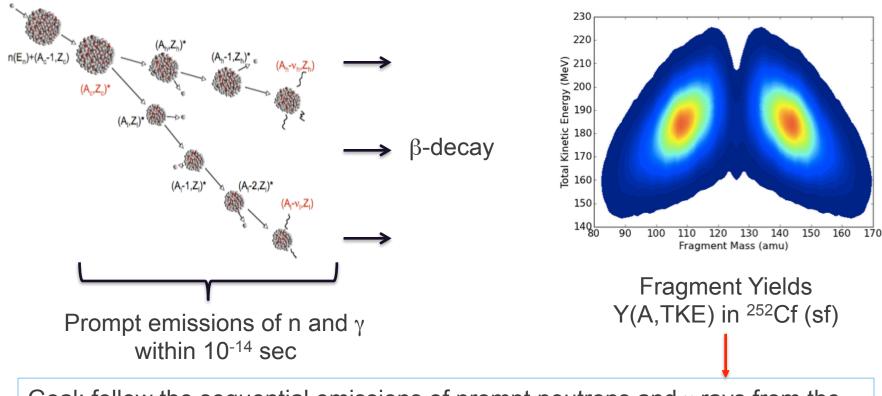
UNCLASSIFIED

NISA RELIGIONAL PROCESSION AND ADMINISTRATION Slide 9


Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

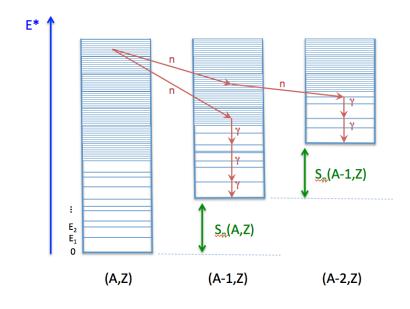
ENDF/B-VIII.β4 changes

- Last beta release in which criticality can be affected
- Change log highlights
 - New ¹H, ⁵⁶Fe, ²³⁵U, ²³⁸U, and ²³⁹Pu CIELO evaluations
 - New evaluations incorporating the 2017 Neutron Standards evaluations
 - 6Li, 10B, 197Au
 - New Thermal Scattering Law evaluations from NCSU
 - UN (tsl-UinUN.endf and tsl-NinUN.endf)
 - Many many bug fixes and other improvements
 - Full change log: https://ndclx4.bnl.gov/gf/project/endf/


Status of Prompt Fission y-Ray Evaluations

- ENDF sections:
 - MF1, MT458: components of energy released in fission
 - MF15, MT18: prompt fission γ-ray spectrum
- ENDF/B-VII.1:
 - <u>U-235:</u>
 - Taken from B-VI
 - Stewart, Alter, Hunter, ENDF-201 (1976) evaluation based on Verbinski and experimental data (100 nsec after fission)
 - Stewart and Hunter, LA-4918 (1972)
 - <u>Pu-2</u>39:
 - Taken from B-V.2
 - Hunter and Stewart, LA-4901 (1972)
 - Verbinski et al. data

Photons per MeV per fission for ²³⁹Pu and ²³⁵U for thermal neutrons as a function of The experimental points of Verbinski and Sund are compared with the evaluated data for 239pu, shown as a smoothed curve.


Modeling Prompt Fission Neutrons/Gamma Rays (CGMF)

<u>Goal</u>: follow the sequential emissions of prompt neutrons and γ rays from the excited primary fission fragments, event-by-event.

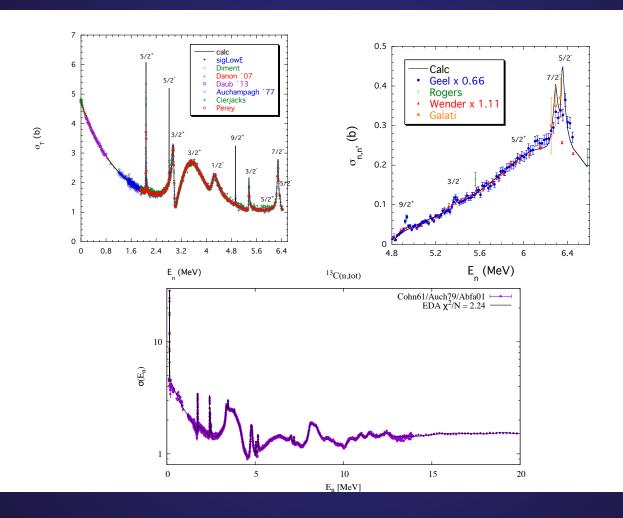
Monte Carlo Hauser-Feshbach (CGMF)

- Hauser-Feshbach statistical theory of nuclear reactions
 - Neutron and γ-ray emission probabilities calculated and sampled at each stage of the decay
- **CGMF**: Monte Carlo implementation
- Full kinematic reconstruction of fission fragments, neutrons and gammas emitted

Monte Carlo histories of fission events

$$A, Z, KE, U_i, J_i, \pi_i, \nu_n, \nu_\gamma$$

 $\vec{p}_F(\text{pre}), \vec{p}_F(\text{post}) \text{ in LAB frame}$
 $\{\vec{v}_{n_i}, E_{n_i}\}_{i=1,\nu_n}, \{\vec{v}_{\gamma_j}, E_{\gamma_j}\}_{j=1,\nu_\gamma}$

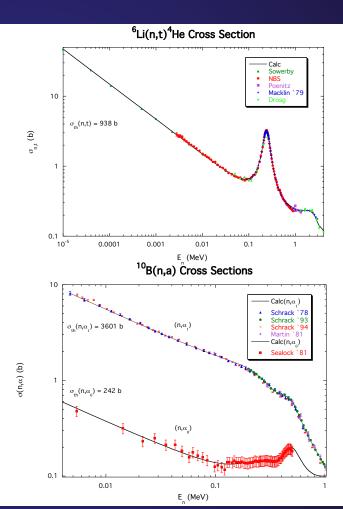

Analysis of Reactions in the ¹³C System

channel	a _c (fm)	I _{max}
$n+^{12}C(0^+)$	4.6	4
n+12C*(2+)	5.0	1
γ+ ¹³ C	50	1

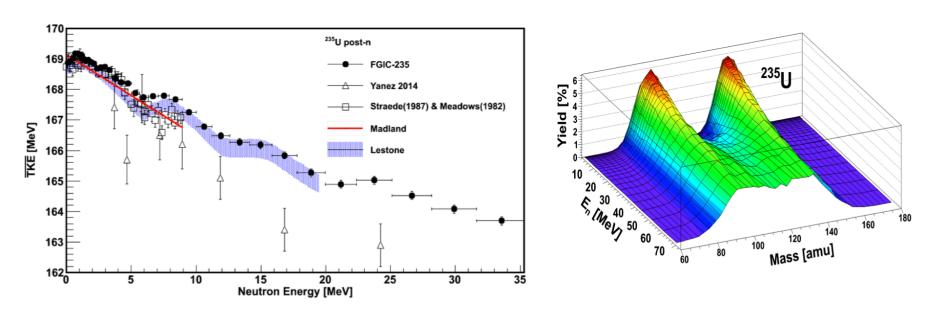
Reaction	Energies (MeV)	# data points	Data types
¹² C(n,n) ¹² C	$E_n = 0 - 6.45$	6940	σ_T , $\sigma(\theta)$, $A_n(\theta)$
¹² C(n,n') ¹² C*	$E_n = 5.3 - 6.45$	443	σ_{int} , $\sigma(\theta)$
$^{12}C(n,\gamma)^{13}C$	$E_n = 0 - 0.199$	7	σ_{int}
total	4994	7390	5

 χ^2 per degree of freedom = 1.54

n+12,13C Cross Sections



Analyses for the Light-Element Standards


 n-p scattering: N-N analysis goes up to 100 MeV; plan to to extend it to 200 MeV.

• 6 Li(n,t): 7 Li analysis gives excellent fits ($\chi^{2}/v=1.36$) to data up to 4 MeV.

- 10 B(n, α): 11 B analysis gives excellent fits ($\chi^2/v=1.14$) to data up to 1 MeV.
- Natural carbon: σ_{el} increased ~2% at 2 MeV, as already shown.

Need accurate fission yields Y(A,Z,TKE) as a function of E_{inc}

D. Duke, PhD Thesis, LA-UR-15-28829 (2015)

Also, ongoing theoretical work by A.J.Sierk (LANL)